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ABSTRACT
We study solutions of the 3-Dimensional wave equation with boundary Conditions on Cartesian co-ordinates, and we also study 
the analogous problem on a certain axis.  This gives an alternative method of obtaining solutions of a corresponding problem in 
3-Dimensional wave equation further, In this paper, we find the solution of 3-D wave equation .Three dimensional  wave occur in 
earth quake, tsunami and many physical states. In this paper we discussed the 3-D wave equation in XYZ axis and using partial 
differential equation.
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INTRODUCTION

Solutions of the wave equation with boundary conditions 
have many practical applications in engineering and physics.  
The paradigm of such textbook problems is that describing 
vibrations of a circular membrane (the shape of a drum) re-
quiring solutions of the wave equation in a 3- dimensional.  
These solutions must vanish on the rectangular boundary of 
the membrane [8]. A theoretical application of much cur-
rent interest, requiring such solutions, is the computation of 
sound  energies for spherical boundary conditions. We show 
here that it is just as easy to set up such problems in a certain 
co-ordinate plane [3]

RESEARCH METHODOLOGY 

The following Research Methodology is adopted for the pro-
posed Research paper: 

•	 Identification	of	the	problem	
•	 Collection	and	study	of	related	literature	
•	 Mathematical	formulation	of	the	problem
•	 Analysis	and	numerical	solution	of	the	mathematical	

model 
•	 Interpretation	of	results	
•	 Conclusion	

Mathematical formulation of the problem 
The physical setting for our problem is as follows. We con-
sider the three dimensional wave equations with the normal 
axis.

Three dimensional wave equation is 
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 Let ( , , , )u x y z t XYZT=  (1.2)

Where X is function of x only, Y is function of y only, Z is 
function of z only and  T is function of t only.
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From equation (1.1)

We have,
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This will be true only when each member is a constant,
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+ = + = + =  and 
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The solution of equation (1.5) are 

1 1 2 1cos sinX c k x c k x= + , 5 3 6 3cos sinZ c k z c k z= + and

 7 1 2 3 8 1 2 3cos ( ) sin ( )T c k k k t c k k k tρ ρ= + + + + +    (1.6)

The solution of equation (1.1)

1 1 2 1( cos sin )c k x c k x+ 1 1 2 1( cos sin )c k x c k x+

5 3 6 3( cos sin )c k z c k z+ 5 3 6 3( cos sin )c k z c k z+

7 1 2 3 8 1 2 3( cos ( ) sin ( ) )c k k k t c k k k tρ ρ+ + + + +  (1.7)

Now Let us suppose that membrane  is cuboids and stretched 
among the lines 0, ; , ; ,x x a y a y b z c z c= = = = = =  

Figure 1: 3-dimensional wave form 

Then the boundary value conditions are:
( ) (0, , , ) 0, 0( ) ( , , , ) 0, ( ) ( ,0, , ) 0, 0
( ) ( , , , ) 0, ( ) ( , ,0, ) 0, 0( ) ( , , , ) 0,

.

i u y z t when x ii u a y z t when x a iii u x z t when y
iv u x b z t when y b v u x y t when z vi u x y c t when y c
for all t

= = = = = =
= = = = = =   

Applying condition (i) and (ii)

We have 1 10 lc and k
a
π= =

2 3 2 4 2 5 3 6 3( , , , ) sin ( cos sin )( cos sin )l x
au x y z t c c k y c k y c k z c k zπ= + +

7 1 2 3 8 1 2 3( cos ( ) sin ( ) )c k k k t c k k k tρ ρ+ + + + +  (1.8)

Applying condition (iii) and (iv)

We have 3 20 mc and k
b
π= =  

2 4 5 3 6 3( , , , ) sin sin ( cos sin )l x
a

m yu x y z t c c c k z c k z
b

π π= +

7 1 2 3 8 1 2 3( cos ( ) sin ( ) )c k k k t c k k k tρ ρ+ + + + +   (1.9)

Now Applying condition (v) and (vi)

We have 5 30 nc and k
c
π= =

2 4 6( , , , ) sin sin sinl x m y n cu x y z t c c c
a b z
π π π=

7 1 2 3 8 1 2 3( cos ( ) sin ( ) )c k k k t c k k k tρ ρ+ + + + +  (1.10)

2 4 6( , , , ) sin sin sinl x m y n cu x y z t c c c
a b z
π π π=
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+ + + + + 
 

 (1.11)

Or

( )2 4 6 7 8( , , , ) sin sin sin cos sinl x m y n cu x y z t c c c c pt c pt
a b z
π π π= +  (1.12)

Where 
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General solution as

( )
1 1 1

( , , , ) sin sin sin cos sinl m n l m n
l m

l x m y n cu x y z t A pt B pt
a b z
π π π∞ ∞ ∞

= = =

= +∑∑∑  (1.13)

Suppose the membranes start from the rest from the initial 
position  ( , , ,0) ( , , )u x y z f x y z=

If 0l mnB =  , we get 0l mnB =

1 1 1

( , , , ) sin sin sin cosl m n
l m

l x m y n cf x y z A pt
a b z
π π π∞ ∞ ∞

= = =

= ∑∑∑  (1.14) 
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Using Fourier series, 

0 0 0

( , , , ) sin sin sin
8

a b c

l mn
l x m y n c abcf x y z dx d y dz A
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π π π =∫ ∫ ∫

Or 
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Thus the required solution of 3-D wave equation is 

2 2 2

2 2 2
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( , , , ) sin sin sin cosl mn
l m

l x m y n c l m nf x y z A t
a b z a b c
π π π πρ

∞ ∞ ∞

= = =
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Where 

0 0 0

8 ( , , , ) sin sin sin
a b c

l mn
l x m y n cA f x y z dx d y dz

abc a b z
π π π= ∫ ∫ ∫

CONCLUSION 

In this paper, for a general solution of three dimensional of 
wave equations is fond and with the help of this solution, 
we have to find varies kind of solution wave equations for 
example radio waves, telephonic wave etc.
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